Forekomsten av insekter og edderkoppdyr som potensiell næring for lirypekyllinger (*Lagopus lagopus*) på Lifjellet i Lierne kommune.

The occurrence of insects and arachnids as potential nutrition for willow grouse chicks (*Lagopus lagopus*) on Lifjellet in Lierne municipality.
Forekomsten av insekter og edderkoppdyr som potensiell næring for lirypekyllinger (*Lagopus lagopus*) på Lifjellet i Lierne kommune.

The occurrence of insects and arachnids as potential nutrition for willow grouse chicks (*Lagopus lagopus*) on Lifjellet in Lierne municipality.

av
Stian Kristoffer Iversen

Nord Universitet, Steinkjer

Avdeling for næring, samfunn og natur
Innhold

Forord ...1
Sammendrag ...2
Abstract ..3
1.0 Innledning ...5
 1.1 Bakgrunnen for oppgaven ...5
 1.2 Sentrale forhold ved lirypas biologi og økologi ...5
 1.3 Insekters betydning i lirypekyllingenenes diett ...6
 1.4 Problemstillinger ...8
2.0 Studieområde ..8
3.0 Metode og materialer ..10
 3.1 Fangst av insekter og edderkoppdyr ...10
 3.2 Arts- og gruppebestemmning på laboratoriet ..11
 3.3 Innhenting og behandling av klimatiske data ..11
 3.4 Kartdata ..11
4.0 Resultater ..12
 4.1 Samlet fangst av insekter og edderkoppdyr i studieperioden12
 4.2 Ukentlig fangst av insekter og edderkoppdyr i studieperioden15
 4.3 Klimatiske faktorers påvirkning på forekomsten av insektgruppene18
5.0 Diskusjon ...19
 5.1 Bruken av fangstmetoder ...19
 5.2 Forekomsten av insekter og edderkoppdyr ...20
 5.3 Forekomsten av insekter og edderkoppdyr versus klimafaktorer21
 5.4 Forholdet mellom forekomsten av insekter og edderkoppdyr og lirypekyllingens klekktidspunkt22
6.0 Konklusjon ...23
Referanser ..24
Internettkilder ...25
7.0 Vedlegg ..26
 Vedlegg A. Beskrivelse over de ulike gruppene insekter og andre leddyr26
 Tusenbein og skolopendere – mangeføttinger (Myriapoda)26
 Spretthaler (Collembola) ..27
 Vårfluer (Trichoptera) ..28
 Døgnfluer (Ephemeroptera) ..30
 Steinflyer (Plecoptera) ..31
 Øyenstikkere (Odonata) ..32
 Teger (Heteroptera) ...33
Biller (Coleoptera) ... 35
Tovinger (Diptera) .. 36
Årevinger (Hymenoptera) ... 39
Edderkoppdyr (Arachnida) .. 41
Sommerfugler (Lepidoptera) ... 42
Vedlegg B. Snødekket .. 44
Vedlegg C. Bilder fra tellingen av insekter .. 45
Vedlegg D. Kart over avgrensningen av studieområdet – kommunalt nivå 47
Vedlegg E. Oversikt over rypers matfat .. 48
Vedlegg F. Ukentlig fordeling av insekter og edderkoppdyr i 2017 49
Vedlegg G. Ukentlig fordeling av insekter og edderkoppdyr i 2018 50
Forord

Denne bacheloroppgaven ble skrevet for å markere avslutning på min treårige utdanning innen utmarksforvaltningsstudiet ved Nord universitet i Steinkjer. Og i den forbindelse skrives oppgaven i regi av rypeprosjektet hvor en av veilederne til denne oppgaven, Pål Fossland Moa, engasjerer seg aktivt i prosjektet og hadde derfor behov for data som omhandler insekter knyttet til reder hos lirypa. Insekter er blant dyrene som har fascinert meg mest, både fordi de er mangfoldige og utgjør storparten av dyrelivet i norsk fauna, og fordi det finnes utrolig mye kunnskap i det å lære om insekter – enten det er snakk om humler eller biller. Helt siden jeg var yngre, har insekter vært de av dyrene blant alle dyr som finnes på jorda som har fanget min interesse aller mest – og som fortsatt fanger interessen min den dag i dag. Det er med stor takknemlighet at jeg i denne anledningen har vært heldig med å få være med og samle inn insekter som et bidrag til rypeprosjektet.

Jeg vil her benytte anledningen til å rekke en stor takk til veilederne for denne oppgaven, Pål Fossland Moa og Rolf Terje Kroglund, for å ha gitt meg denne muligheten til å være med på feltarbeid og skrive denne oppgaven, for å ha bistått med gode retningslinjer og god veiledning og sist men ikke minst for å ha vært tilgjengelige når jeg har hatt behov for hjelp. Videre ønsker jeg å takke dem som var involvert i å samle inn insekter til feltarbeidet. Jeg vil også takke for å ha fått anledningen til å ha vært med og bidratt med produksjon av kunnskap i forbindelse med insekter og deres tilknytning til rypeprosjektet i samband med Nord universitet Steinkjer.
Sammendrag

Lirypekyllinger er de første ukene helt avhengig av insekter. Dette for å dekke behovet for proteiner til vekst og fordi insekter er lettere for lirypekyllinger å fordøye fremfor planter. Lirypekyllinger foretrekker sommerfugllarver, larver av målere, voksne tovinger, som stankelbeinmygg og stikkemygg, og nebbmunner. De spiser i tillegg blomster av bærlyng som blåbær, blad fra planter som fugletelg, småmarimjelle og fjellfrøstjerne og i noen tilfeller yngleknopper av harerug foretrukket av lirypekyllinger. Tilgangen på insekter er imidlertid helt avgjørende for overlevelsen.

Abstract

The willow grouse, also known as willow ptarmigan, is a species of a bird in the grouse subfamily (Tetraonidae) of the pheasant family (Phasianidae). The willow grouse live in forest belts of birch (Betula sp.) and willow trees (Salix sp.). During the first period of growth, the willow grouse mainly lives on insects, partially due to the needs of proteins to ensure growth and due to insects being more digestible rather than plants. By insects that the willow grouse chicks seem to prefer the most, are adults of Diptera, caterpillars of moths and butterflies, especially of moths belonging to the family Geometridae. When the willow grouse chicks are a couple of weeks old, their diet gradually changes from living mostly on insects to a rather plant-based diet. By plants, the willow grouse chicks seem to prefer parts of plants like petals of Vaccinium, leaves of plants of northern oak fern, small cow-wheat and alpine meadow-rue as well as gemmas of alpine bistort.

The purpose of this study was to find the occurrence of insects by the number of insects caught and to see if there is a correlation between data of climatic factors, i.e. rainfall and temperature, and the occurrence of insects in the nesting areas to willow grouse chicks. The study area consists mostly of vegetation of tree species such as birches, patchy areas with spruce and pine trees, areas with heathers and Vaccinium, thickets of cypresses, some areas with dry grounds and patchy areas consisting of bogs and fens.

The method used for gathering insects in the study area was the use of pitfall traps by using beakers filled with alcohol as traps. A total of 24 pitfall traps, distributed to three trap stations where each trap station serves as a centre with a set of eight pitfall traps. The placement of each of the sets of traps was placed in a shape of a cross, where pairs of traps were placed with a distance from 100 to 300 meters from the centre, and with a direction to the north, south, east and west. Each trap was checked and emptied for insects every once in a week during a five weeks of field study. Insects that were caught in each trap, was emptied in sample glass – giving a total of 120 sample glasses with insects after a five weeks period.

The results of this study show that the number of insects fluctuates from low to high numbers, giving a variation of the occurrence of insects every week and every year. By the insects and other arthropods that were caught during the field study in the study area, there were mostly
arachnids such as spiders, springtails, adult beetles, ants, black flies, crane flies and caterpillars. In average of 70 percent of the total numbers of insects that were caught, were spiders. The results also showed that increased temperature or increased precipitation did not have any distinct effect to the number of insects and arachnids, given that both are poikilothermic and that both insects and arachnids increase in numbers during warmer climate. However, increased temperature seems to have had a certain impact on the numbers of insects and arachnids.

Using pitfall traps as the only method to gather insects makes the results overly representable for insects living in the ground and less representable for insects that lives over ground (e.g. insects that are present on trees or in the air). By considering the use of other methods in addition to using pitfall traps, the results may be more representable – including possibility of higher numbers of flying insects.
1.0 Innledning

1.1 Bakgrunnen for oppgaven

Bakgrunnen for oppgaven var behovet om å finne ut om næringsvalgene av insekter hos kyllinger av lirype (*Lagopus lagopus*) på Lifjellet i Lierne kommune, dette som et bidrag til rypeprosjektet i Lierne, et prosjekt som drives i samarbeid med kompetansesenteret Norsk institutt for naturforskning og utdanningsinstitusjonen Nord universitet i Steinkjer. Interessen for å finne ut om næringsvalgene av insekter legger grunnlaget for oppgaven, noe som blir utdypet mer i delkapittel 1.3 *Insekters betydning i lirypekyllingenes diett*. Prosjektet i seg selv gikk ut på å undersøke sentrale forhold ved lirypas demografi, da i henhold til dødelighet på egg- og voksenstadiet knyttet til ulike dødsårsaker (herunder jakt) og mulige effekter av klimaendringer på lirype, særlig av forhold knyttet til hekkeøkologi og arealbruk. Spesielt er det forholdet knyttet til hekkeøkologien bidraget om næringsvalg av insekter hos lirypekyllinger kommer inn i bildet.

1.2 Sentrale forhold ved lirypas biologi og økologi

Lirypea er en art som tilhører skogshønsfamilien og som igjen er en del av hønsefuglordenen, og kalles gjerne for skogshøne mange steder i Norge, særlig i Nord-Norge. Den er blant de største artene blant ryper i Norge, og sammenliknes størrelsen mellom fjellrypa (*Lagopus muta*) og lirypea, vil lirypea bli opptil 40 centimeter lange for begge kjønn sammenliknet med fjellrypa, hvor lengden blir rundt 36 centimeter lange for begge kjønn (Pedersen & Karlsen, 2007).

beholder noen brune fjær fra vårfjærdrakten etter skiftet til vinterdrakten (Pedersen & Karlsen, 2007).

1.3 Insekters betydning i lirypekyllingenes diett

Betydningen insekter har for lirypekyllinger henger sammen med proteinbehovet for å sikre vekst og levedyktighet. Tiden etter klekking og den første uka av oppveksten, er kyllingene avhengige av å opprettholde energibalansen – noe som blir opprettholdt ved å spise insekter. Derfor vil det være mer gunstig at det tilstrekkelig dersom det er passe høy temperatur, noe som videre medfører høyere forekomster av insekter – før lirypekyllingene klekkes, fremfor om det er kaldt og dårlig vær og lite forekomster av insekter både før klekking og etterpå (Pedersen & Karlsen, 2007). Veksten hos nyfødte lirypekyllinger er avhengig av tilskudd av proteiner, gjennom høye inntak av insekter – dette fordi lirypekyllinger er avhengig av dette inntaket av proteiner for å øke mer i kroppsvekt og sikre veksten. I løpet av de tre første dagene frem til det har gått ei uke, utgjør insekter omtrent 60 % av lirypekyllingenes diett. Etter hvert som lirypekyllingene vokser til, det vil si når det har gått mer enn 3 dager og frem til ett par uker, går dem gradvis over til å spise mer planter.

Fordelen med insekter som diett virker til å være dels fordi insekter er proteinrike og dels fordi insektene er mer lettfordøyelige for lirypekyllinger sammenliknet med fordøying av
planter blant plantekosten. Dette skyldes mikroorganismene som er i stand til å bryte ned plantenæringen i blindtarmen hos lirypa. I løpet av vekstperioden mangler lirypekyllingene disse mikroorganismene i startfasen, men etter hvert som bakteriefloraen får utvikle seg, vil lirypekyllinger gradvis være i stand til å bryte ned planter på lik linje med insekter (Tromsø museum, 1988).

Av de samtlige kyllingene som ble fanget ble kyllingenes kro undersøkt for insekter og plantevækster. Det ble samtidig gjort innsamling insekter med bruk av håv ved lirypekyllingenes oppholdssted. Resultatet fra denne undersøkelsen var i hovedsak voksne nebbmunner (Hemiptera), tovinger (Diptera) og sommerfugllarver (Lepidoptera). Av 47 kyllingene, var det seks som ikke hadde innhold av insekter, og av 59 kyllingene var det fire som ikke hadde påviselig innhold av insekter i kroa (Spidsø, 1980).

Studiet viste hvilke insekter lirypekyllingene foretrakk best og hvordan lirypa taklet værforholdene. Av insekter var det dominans av insekter som sikader, bladlus og tovinger – i tillegg til sommerfugllarver. Studiet viste også at faktorer som minkende gjennomsnittstemperatur og økende mengde nedbør påvirket lirypa gjennom forkortet furasjeringstid (Spidsø & Erikstad, 1982). Det ble også vist at lirypekyllinger holder seg unna tett vegetasjon som følger av nedbør og våt vegetasjon – for å unngå å bli våt og kald (Spidsø & Erikstad, 1982).
En nyere undersøkelse basert på tematikken rundt liryper og insekter tar utgangspunkt i en rapport som omhandler vegetasjonsmanipulering og skjøtsel av liryper, hvor det her i tillegg ble gjort en undersøkelse på bestanden av insekter i Dovre som et delprosjekt vedlagt hovedundersøkelsen på effektene ved vegetasjonsmanipuleringen. Formålet bak delprosjektet var å undersøke tilgangen på insekter og å finne ut hvor stor bestanden av insektene var før og etter endringen av vegetasjonen gjennom vegetasjonsmanipulering. Vegetasjonsmanipuleringen skjedde ved kontrollert brann og/eller vegetasjonskuttning (Pedersen, 1991).

Bakgrunnsstoffet som blir belyst her, har til felles med at det blir vist hvilke typer insekter lirypekyllinger foretrekker. Hvilke insekter som lirypekyllinger foretrekker, ut fra slike undersøkelser, kommer helt an på hvilke insektgrupper som er tilgjengelige i leveområdet. Dersom noen er særlig tallrik i leveområdet, er det sannsynlig at lirypekyllinger prefererer disse. Forekomster av insektgrupper varierer fra år til år eller fra område til område. Eksempelvis kan det være veldig mye sommerfugllarver ett år, og lite sommerfugllarver neste år – noe som medfører variasjon av hvilke insektgrupper lirypekyllinger selekterer. Størrelsen på insekter har også noe å si for hvilke insekter lirypekyllinger foretrekker. Det har blitt vist at lirypekyllinger i gjennomsnitt foretrekker større insekter enn det som i gjennomsnitt er tilgjengelig av forekomster av insekter. Trolig har dette sammenheng med proteinmengden som blir dekt ved inntaket av slike store insekter (Tromsø museum, 1988).

1.4 Problemstillinger
Formålet med denne oppgaven var å finne ut hvordan mengden og sammensetningen av insekter og edderkoppdyr var i de respektive hekkeområdene for lirype somrene i 2017 og 2018. Det ble videre funnet ut om resultatene fra innsamlingen samsvarer med klimatiske faktorer som nedbør og temperatur.

2.0 Studieområde
For å beskrive område omkring fellestasjonene, er det nødvendig å dele inn stasjonene med reir-IDene 049, 179 og 249 hver for seg. Studieområdet var delt i tre såkalte stasjoner, alle tre i nærheten av Øystre Tverrelva i Lifjellet i Lierne.
Fellestasjon 1 (reir-ID 049):
Nordover fra sentrumet består vegetasjonen for det meste av våtmyr til torvmyr, med innslag av lyng og gress. Østover fra sentrumet, består vegetasjonen av bjørkeskog og med innslag av fjellbjørk (Betula pubescens var. pumila), noe tørrere myr og lyng. Fra sentrum og sørover varierer vegetasjonen med innslag av bjørkeskog og lyng og over til en tørr lynghei. Fra sentrum og vest endrer vegetasjonen fra å være myr med innslag torvmoser (Sphagnum sp.) og lyng og spredt med fjellbjørk og videre over til lyngbakker/hei spredt med skog av fjellbjørk og gran (Picea abies).

Fellestasjon 2 (reir-ID 179):
Nord fra sentrum varierer vegetasjonen fra å bestå av bart fjell, og med lyngvegetasjon, før det siden endres til å være innslag av spredt vegetasjon med fjellbjørk. Fra øst og sør er det for det meste åpne områder med torv og humus med innslag av lyngbakker og flekkvis med torvmyr. Mot vest omtrentlig lik vegetasjon slik som vegetasjonen mot øst og sør.

Fellestasjon 3 (reir-ID 249):
Mot nord er vegetasjonen bestående av våtmyr til tørrere myr, med innslag av torvmoser til lyng og spredt furu. Østover varierer vegetasjonen fra å være tørrere lyngbakker/-heier spredt med fjellbjørk og einer (Juniperus communis), til å omfatte tørr myr med lyngvekster. Sørover varierer vegetasjonen fra å være våtmyr med innslag av gress og torvmoser til å bestå av tørrere hoyder med innslag av krekling (Empetrum nigrum), røsslyng (Calluna vulgaris) og fjellbjørk. Fra vest varierer vegetasjonen fra å være åpen skog med kratt med bjørk med innslag av lyng og gress, til å omfatte en blandingsskog i nærheten av ei elv, dominert av bjørk (Betula pubescens) og med innslag av skrubber (Cornus suecica).

Studieområdet er dominert av fattig myr, med fjellbjørk og innslag av gran, furu og einer. Området er også karakterisert av tørrere heier med lyngplanter.
3.0 Metode og materialer

3.1 Fangst av insekter og edderkoppdyr

Insekter og edderkopper ble fanget med fallfeller. Det ble benyttet begerglass fylt med sprit, som ble gravd ned med kanten på høyde med bakken. Fallfellene ble plassert etter et fast oppsett med åtte feller på hver stasjon. Fellene ble plassert med utgangspunkt i hekklokaliteter til liryper som sentrum for hver fellestasjon. To av de åtte fallfellene ble plassert mot nord; en av dem hundre meter nord og den andre trehundre meter nord, to til ble plassert henholdsvis hundre og trehundre meter mot øst, to til mot sør med samme avstand, og enda to til mot vest med samme avstand. Samme plassering ble gjort på tre hekklokaliteter, noe som vil si: 3 fellestasjoner * 8 fallfeller = 24 fallfeller totalt.
Innholdet fra fallfellene ble tømt over i egne glass med etiketter med informasjon om dato og fellestatjon i påvente av senere analyse på laboratoriet. Deretter ble fallfellene fylt med ny sprit. Fellene ble sjekket en gang i uka i fem uker. (Dette gir totalt: 24 fallfeller med insekter * 5 uker = 120 glass med insekter.)

3.2 Arts- og gruppebestemming på laboratoriet
Innholdet i glassene ble tømt i egne petriskåler, og undersøkt med lupe med 10-20 millimeter forstørrelse. Insektene og edderkoppdyrene ble identifisert og ble sammen med antallet lastet inn i programmet Excel.

3.3 Innhenting og behandling av klimatiske data

3.4 Kartdata
Kartdata som ble benyttet som bakgrunnskart over studieområdet ble hentet fra Norsk geologisk undersøkelse, og er av formatet raster av typen N50 og vektordata av N50. Koordinatene som angir hvor fellene ble plassert, ble hentet inn via overføring av X og Y (nord og østkoordinater) angitt av en GPS. Koordinatene ble overført til programmet ved bruk av GIS-verktøyet Excel to Table, et verktøy som overfører tall og data fra tabeller i Excel over som tabeller i ArcMap. Når alle tabellene over koordinatene for hver av fellestatjonene var
blitt overført, ble koordinatene fremstilt på kartet ved å høyreklikke på tabellene i ArcMap og velge der det står Display XY Data – forutsatt at koordinatverdiene er lagt inn i hver sine kolonner, ett for X-koordinater (øst) og ett for Y-koordinater (nord). Kartdataen og koordinatene ble bearbeidet gjennom bruk av programmet ArcMap 10.4.1, et karttegneprogram drevet av det amerikanske selskapet Esri.

4.0 Resultater

4.1 Samlet fangst av insekter og edderkoppdyr i studieperioden

Både i 2017 og i 2018 var fangst fra fallfellene dominert av edderkoppdyr og insekter maur, biller og spretthaler (se tabell 1). Det fremgår også av tabell 1 at grupper som billerlarver, knott, klegg/blindinger/regnklegg, fluer, maur, stikkevepser og edderkoppdyr, har hatt en nedgang i antall samtidig som det til sammenlikning har vært en viss økning i antall av grupper som spretthaler, voksne biller, knott, stankelbein, snyltevepser og sommerfugllarver i løpet av studieperioden. Grupper der det var til ingen forekomster var blant annet øyenstikkere, teger, stein-, vår- og døgnfluer, årevinger som stikkeveps, bier, humler, tre-, plante- og snylteveps og mangeføttinger som tusenbein og skolopendere. Disse tilfellene fremgår også overfor vedlegg F, tabell 2 og vedlegg G, tabell 3 over de ukentlige forekomstene i studieperioden.

Figur 2 viser de gjennomsnittlige prosentandelene insektgrupper og edderkoppdyr gitt for begge somrene, hvor edderkoppyrene utgjorde i overkant to tredjedeler (71%) av den totale gjennomsnittlige prosentandelen, mens blant prosentandelene overfor insektgruppene er det maur som var den mest tallrike (10%) blant insektene.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>År 2017</th>
<th>År 2018</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tusenbein/skolopendere</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spretthaler</td>
<td>34</td>
<td>142</td>
<td>176</td>
</tr>
<tr>
<td>Døgnfluer</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steinfluer</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vårfluer</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Øyenstikkere</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teger</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biller (vøksen)</td>
<td>80</td>
<td>133</td>
<td>213</td>
</tr>
<tr>
<td>Biller (larve)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Knott</td>
<td>46</td>
<td>61</td>
<td>107</td>
</tr>
<tr>
<td>Mygg</td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Stankelbein</td>
<td>18</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>Fluer</td>
<td>56</td>
<td>29</td>
<td>85</td>
</tr>
<tr>
<td>Klegg, blinding, regnklegg</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Planteveps</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snylteveps</td>
<td>1</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Maur</td>
<td>257</td>
<td>166</td>
<td>423</td>
</tr>
<tr>
<td>Stikkeveps</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Humler</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bier</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sommerfugler (vøksen)</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sommerfugler (larve)</td>
<td>19</td>
<td>22</td>
<td>41</td>
</tr>
<tr>
<td>Edderkoppdyr</td>
<td>1618</td>
<td>1446</td>
<td>3064</td>
</tr>
<tr>
<td>Ubestemte insekter 1</td>
<td>96</td>
<td>51</td>
<td>147</td>
</tr>
<tr>
<td>Annet 2</td>
<td>36</td>
<td>45</td>
<td>81</td>
</tr>
<tr>
<td>TOTALT</td>
<td>2275</td>
<td>2150</td>
<td>4425</td>
</tr>
</tbody>
</table>

1 Med ‘Ubestemte insekter’ menes insekter eller edderkoppdyr i materialet der det ikke var mulig å fastsette gruppe på.
2 ’Annet’-kategori er en gruppe for bifangst gjennom tellingen av innholdet av insekter og edderkoppdyr. Primært snegler som tilhører rekken bløtdyr eller firfisler.
Av arter eller grupper av insekter det var mulig å fastsette fra materialet fra studieperioden, ble det funnet arter av biller som utgjorde 5 % av fangsten og hvor dominerende var biller som tilhører åtselgravere, arten fiolett jordløper (*Carabus violaceus*) og vanlig jordløper (*Carabus nemoralis*), larver av sommerfugler som målere (trolig bjørkemålere), sommerfuglen seksprikket bloddråpesvermer (*Zygaena filipendulae*), vingeløse insekter som sprethaler av typen kule- og leddspretthaler og firdisle (trolig arten nordfirfisle (*Zootoca vivipara*)). Blant andre insekter som var å finne, var det mye av insekter som sikader, en gruppe insekter tilhørende ordenen nebbmunner (*Hemiptera*). De mest tallrike edderkoppdyrene var edderkopper av grupper eller familier som ulveedderkopper (*Lycosidae*) og vevkjerringer (*Opiliones*) og arten jordmidd (*Trombidium holosericeum*).
4.2 Ukentlig fangst av insekter og edderkoppdyr i studieperioden

Ut fra dataene beregnet over det totale antallet insekter og edderkoppdyr (beregnet etter summen av antallet insekter fra hver uke minus summen av antallet i ’’Annet’’ kategorien) fanget i studieperioden, kan det åpenbart ses tydelig samlede forekomster av insekter og edderkoppdyr i perioden uke 27 til og med uke 30 og uke 27 til og med uke 29 i 2018 (Figur 3.).

Fokuseres det på antallet insekter per uke i løpet av fangstperiodene i 2017 og 2018, kan det fortsatt tydelig ses dominans av forekomster av edderkopper, maur og biller, og i visse tilfeller forekomsten av spretthaler, men antallet virker til å være jevnt fordelt mellom ukene begge årene. For nermere innblikk på estimatene av insektforekomsten etter ukene, se figur 28 og 29 og tabelloversikten over antallet insekter i vedlegg F, tabell 2 og vedlegg G, tabell 3.

På samme måte som for tallene over antallene insekter per gruppe og edderkoppyr, gitt som årlig forekomst i Tabell 1., fremgår det ikke heller ikke i vedlegg F, tabell 2 og vedlegg G, tabell 3, forekomster av insektgrupper som bier, humler, plante- og trevepser, tusenbein/skolopendere, teger og vannlevende insekter som øyenstikkere, døgn- og steinfluer.

Figur 5. Fordelingen av fangst av insektgrupper og edderkoppdyr per uke i studieperioden 2018.
4.3 Klimatiske faktorers påvirkning på forekomsten av insektgruppene

![Figur 6. Sammenhengen mellom klimatiske faktorer og insekt- og edderkoppdyrforekomsten for 2017.](image-url)
5.0 Diskusjon

5.1 Bruken av fangstmetoder

I denne undersøkelsen ble det benyttet fallfeller. Dette ga forekomster av edderkoppdyr, biller, spretthaler og maur i tillegg til spredte forekomster av sommerfugllarver, fluer, stankelbein, mygg, knott, klegg og vepser (snyltevepser og en stikkveps) sommeren 2017 og 2018. Dette resulterte trolig i at framstillingen av insektforekomsten ble noe vesentlig representativt for insekter som er mer bakkelevende eller som lever mer i jorden, men som igjen fører til at insekter som er mer knyttet til lufta – henholdsvis flyvende insekter som sommerfugler, stilkvepser, humler, bier og tovinger (som omfatter fluer, klegg, stankelbein og mygg), øyenstikkere og øvrige insekter som vår-, stein- og døgnfluer trolig ble underrepresentert.

Tidligere studier har det blitt tatt i bruk andre metoder for å fange insekter og/eller undersøke insektforekomsten i nærheten av lirypas levested. Fra disse studiene ble det benyttet malaisefeller og lysfeller (Pedersen, 1991) og samtidig ble det benyttet slaghåv for å påvirke insektene i vegetasjonen rundt lirypas levested (Pedersen, 1991) (Spidsø & Erikstad, 1982),
og det ble undersøkt for innhold i lirypekyllings kro etter insekter (Spidsø & Erikstad, 1982).

Dersom fallfeller hadde blitt supplert med lys-, vindus- eller flyvefeller, ville det derimot ha sørget for en mer helhetlig framstilling av insektforekomsten, slik at antallet insekter ikke ville ha blitt begrenset til å bare omfatte mer jord- og bakkelevende insekter, men også insekter som lever mer over bakken – noe som igjen kunne ha ført til noe mer representativitet overfor forekomsten av insekter.

5.2 Forekomsten av insekter og edderkoppdyr
Forekomsten av insekter har markert variasjoner i antall, enten tidsrommet gjelder for uker eller for år, og det har særlig vist seg at mengden insekter virket høy en periode, og lavt den neste (Figur 3., 4. og 5.). Hva dette skyldes er uvisst, men trolig har det sammenheng med tilgjengeligheten av insekter som legger til grunn for insektforekomsten (og for hva som vil være tilgjengelig for lirypekyllinger å spise) (Tromsø museum, 1988). Eksempelvis viser resultatene at det for sommeren 2017 var færre spretthaler enn for sommeren 2018 – noe som betyr at tilgjengeligheten på spretthaler var høyere i 2018 enn i 2017. På lik linje med forekomsten av gruppene insekter, varierer også forekomsten av edderkoppdyr fra uke til uke samme studieperiode.

Forekomsten av insekter kan også ha sammenheng med hvilke insekthabitater fangsten av insektene ble gjort i. Insekter som øyenstikkere, stein-, vår- og døgnfluer lever for det meste i nærheten av innsjøer og vann, særlig rennende vann (Hågvar, 2014), noe som forklarer hvorfor det ikke ble funnet noen individer av disse insektene begge sommeren – da området fellene ble satt i bestod for det meste av tørrbakker, tørre lyngeheier og torvmyrer og lite vann. Grunnen til dette henger trolig sammen med at det var lite utvalg av karplanter. Røsslyng dominerede sammen med blomster av bærlyngplanter (Vaccinium), noe som trolig bidro til at det ble fanget få til ingen insekter som bier, humler og vepser, da disse insektene foretrekker en rekke blomster til sanking av pollen og nektar.

Det er verdt å merke seg den høye forekomsten av edderkoppdyr. Under tellingen av insektene ble det funnet mange små individer av edderkopper, trolig unge edderkopper som nylig har klekket fra edderkoppeeg. Antallet edderkoppavkom ble ikke lagt vekt på under
tellingen, da hvert edderkoppavkom ble tellet som ‘’edderkoppdyr’’ i denne sammenheng – noe som gir det høye antallet begge somrene.

5.3 Forekomsten av insekter og edderkoppdyr versus klimafaktorer
Ved sammenlikning av antallet insekter med de ulike klimatiske faktorer som temperatur og nedbør, virket det som om det ikke var noen tydelig sammenheng eller samsvar mellom disse klimatiske faktorene og antallet insekter og edderkoppdyr, uavhengig om antallet har variert fra å ha vært mye insekter og edderkoppdyr til at antallet har vært lite insekter og edderkoppdyr i sammenheng med disse faktorene. Likevel viste figur 6. og 7 en antydning til at temperaturen hadde hatt en viss innvirkning på antallet insekter og edderkoppdyr.

Nedbør virker ikke til å ha hatt særlig stor effekt på forekomsten av insektene og edderkoppdyrene på lik linje med temperaturen og variasjonen av temperaturen (figur 6 og 7). Dette gjenspeiles ved hvordan antallet av insekter og edderkoppdyr varierer uavhengig av den gjennomsnittlige nedbørs mengden (figur 6 og 7). Trolig kan antallet av insekter og edderkoppdyr ha blitt påvirket av nedbør ved at nedbøren tvinger insektene (særlig flyvende insekter) og edderkoppdyr ned i fallfellene.

Selv om nedbør medfører gunstig og fuktig klima for insekter og edderkoppdyr, vil det i noen ekstreme tilfeller med nedbør være ugunstig for insektene og edderkoppdyrene, da insekter og edderkoppdyr vil ha vanskeligheter med å regulere kroppsvæsken – enten det er snakk om

Når det gjelder snømengden og sesongen for barmark, var det ikke noe tall eller data over denne faktoren, slik det tolkes av de klimatiske dataene var det ikke snø da fangsten av insekter og edderkoppyr foregikk i løpet av somrene 2017 og 2018, dermed ble denne klimafaktoren i denne sammenheng. Om det likevel ses på snømengden/snødybden som klimafaktor på lengre tidsrom, før feltarbeidet foregikk, virker det som om sesongen for barmark startet tidligere i 2018 kontra 2017 (vedlegg B, figur 3). Ut fra dette, skulle det forventes at det ble mer insekter i 2018, enn i 2017 – men i dette tilfellet virket det til å være motsatt (tabell 1). Dette henger trolig sammen med tilgjengeligheten av insektgruppene i løpet av ukene insektene ble fanget, slik det ble referert til i delkapittelet 5.2 Forekomsten av insekter og edderkoppyr.

5.4 Forholdet mellom forekomsten av insekter og edderkoppyr og lirypekyllingers klekketidspunkt

Siden det var høyere antall insekter per insektgruppe og høyere antall edderkoppyr i 2017 enn i 2018 (tabell 1) og fangsten av insekter og edderkoppyr startet senere i 2017 enn 2018, kan det antas at insekter og edderkoppyr forekom i høyere antall dersom både insektene og edderkoppyrene fikk tid til å utvikle seg, slik tilfelle kan ha vært for resultatet fra fangsten sommeren 2017. Dermed kan det da forventes at det var mer insekter og edderkoppyr
tilgjengelige for lirypekyllingene (som følger av hvor lang tid utviklingen hos insektene og edderkoppyrene har pågått).

6.0 Konklusjon

Forekomsten av småkryp som næring hos lirypekyllinger er funnet ut til å bestå av mye av edderkopper som ulveedderkopper og vevkjerringer, en god del biler, sprethaler, maur, en del tovinger som fluer og i noen tilfeller sommerfugllarver av målere og annet fangst som sikader. Dette ble gjort med bruk av fallfeller, noe som trolig gir et overrepresentert bilde av insektene som lever mer på bakken enn over bakken. Det bør derfor vurderes bruk av flere fangstmetoder i kombinasjon med fallfeller, som for eksempel bruken av lysfeller, vindusfeller eller malaisefeller, for å få mer av de flyvende insektene. Det ble i fallfellene ikke påvist øyenstikkere, stein-, vår- og døgnfluer. Sannsynligvis har dette sammenheng med at fallfellene ikke var plassert i nærheten av rennende vann, der disse insektene trives best.

Referanser

Internettkilder

7.0 Vedlegg

Vedlegg A. Beskrivelse over de ulike gruppene insekter og andre leddyr

Tusenbein og skolopendere – mangeføttinger (*Myriapoda*)

Mangeføttinger er dyr med todelt kropp, avsatt hode og med lang, slank kropp, oppdelt i like ledd, hvor hvert ledd har ett til to beinpar. Hodet har et par antenn, ett par kjever (mandibler) samt ett til to par underkjever (maxiller). Gruppen består av underklasser som tusenbein (*Diplopoda*), skolopendere (*Chilopoda*) samt øvrige underklasser som dvergfotinger (*Symphyla*) og fåfotinger (*Pauropoda*) (Altin et al., 2017).

Figur 8. Tusenbein, med to par bein per kroppsledd. Til forskjell fra skolopendere beveger tusenbein seg sakte og er vegetarianere. Foto: Hallvard Elven (Folkehelseinstituttet, 2006b).

Spretthaler (*Collembola*)

Spretthaler er oftest planteettere, men de lever også av hyfer eller sporer fra sopp, noe som kan påvirke veksten av sopp. Spretthaler er også viktige nedbrytere av dødt organisk materiale, og vil i stort antall, enten direkte eller indirekte, virke inn på omsetning av dødt organisk materiale (Hågvar, 2014).

Noen spretthaler forekommer også i snø, ofte nær trestammer, på dagligtale kalt ‘snølopper’ og kan ses som svarte små prikker på snøen (Hågvar, 2014). Spretthaler forekommer i to forskjellige kroppsfasonger: kuleformet slik som kulespretthaler eller som leddformet, slik som hos leddspretthaler.

Vårfluer (Trichoptera)

Døgnfluer (*Ephemeroptera*)

Steinfluer (*Plecoptera*)

Steinfluer er brunlige insekter som oppholder seg i nærheten av rennende vann, der hvor steinfluenymfer lever. De er dårlige flyvere og blir som regel sett løpende på bakken eller under steiner. Steinfluer har lange antenner, og har bakvinger som er større enn forvingene. I hvile holder steinflua vingene flatt over kroppen. Steinflua har også et par haletråder festet til bakkroppen. De spiser som regel lite, eller lever for det meste av planter – ergo er de vegetarianere.

Nymfene hos steinfluer skiller fra nymfer hos døgnfluer ved at de mangler gjeller på siden av bakkroppen i tillegg til at steinfluenymfene har en mer flattere kropp og utstående bein i forhold til døgnfluenymfer. Steinfluenymfene har også en tydelig antydning til vingeanlegg. Til forskjell fra fullvokse steinfluer, er nymfene enten rovdyr eller vegetarianere (Hågvar, 2014).

Figur 16. Steinfluer, i hvilende posisjon. Eksemplaret til venstre viser hvordan vingene hos steinfluer er festet. Foto: Hallvard Elven (Artsdatabanken, u.d.-g).

Øyenstikkere (*Odonata*)

Øyenstikkere er store og flyvende insekter, blir alt fra 30 til 75 mm store, har lang, slank bakkropp og har tydelige og klare fargetegninger av metallblått, grønt eller gult. Fullvoksne øyenstikkere har korte antennene og bitemunn. De er også utstyrt med vinger som har tett og forgreinet årenett, og med et svart vingemerke på forkanten. Levevis er øyenstikker dyktige flyvere og rovdyr, og fanger byttedyr i lufta – ved hjelp av store fasettøyne og fremoverrettede forbein (Hågvar, 2014).

Figur 18. Øyenstikker - innelt i to grupper: Vannymfer og libeller. Foto: Hallvard Elsen (Artsdatabanken, u.d.-e).
Teger (Heteroptera)

Teger er insekter i gruppa nebbmunner. Nebbmunner har et munnapparat som er utformet som et nebb eller en snabel og som blir brukt til å suge plantsaft eller blod med. Nebbmunner, herav tegene også, lever for det meste av flytende næring, i form av blod (slik som rovtenger eller veggedyret (Cimex lectularius)) eller plantsaft (som de aller fleste teger og sikader lever av) (Hågvar, 2014).

Fasongen på kroppsbygningen varierer mye hos teger. Noen er lange og smale, andre brede og ovale. Landlevende teger har lange antenner, mens teger i vann, som rygg- og buksvømmere (Notonectidae & Corixidae) og vannskorpioner (Nepidae) har kortere antenner (Hågvar, 2014).
Teger generelt skille fra enkelte plantesugere ved at de har en snabel som går fra forkanten av hodet, har halvdekkvinger – det vil si vinger der vingepar er fortykket og løraktig utenom ytterspissen, hvor ytterspissen er mer tynn og hinneaktig – samt at teger har et tydelig trekantet parti på ryggsiden (Hågvar, 2014).

Biller (Coleoptera)

Hit hører også andre grupper biller, alt fra tordivler (som igjen tilhører gruppen skarabider) med sin store og brede kropp og med kølleformede antennar, til biller som vannkalven, som lever i vann, samt biller med smal kropp og med svært korte dekkvinger som hos enkelte kortvinger og rovbiller, og biller med snuteformede snabler som hos snutebiller. Av øvrige biller hører også marihøner, barkebiller, virvlere, vannkjær, bløtvinger, smellere, klannere, bladbiller, borrebiller og trebukker til gruppen biller (Hågvar, 2014).
Tovinger (Diptera)

Knotten derimot, likner mer på små fluer med runde vinger. Antennene er korte hos knott, dette fordi leddene på antennene er mer brede enn de er lange (Hågvar, 2014).

Laverestående fluer kjennetegnes ved antenner med tre ledd, hvor det siste leddet varierer i formen. (Hågvar, 2014).

Kleggen, som er en familie laverestående fluene, kjennetegnes ved kort, bredt hode, med store metalliske fasettøyne i grønt eller blått. Ved hvile holder klegg vingene flatt. Larver hos klegg er enten rovdyr og lever av andre insekter i fuktig jord eller mudder, mens andre larver plantespisere eller nedbrytere. Av kjente arter blant klegg finnes blinding (Chrysops) som har brunsvart tverrbånd på vingene, regnklegg (Haematopota) med gråbrunflekkete vinger og noe mindre i størrelse, samt kukkleggen (Tabanus) som er den største arten blant klegg, med gjennomsiktige vinger og rødgul kropp (Hågvar, 2014).

Høyerestående fluer, har også tredelt antenner, men det siste leddet er mer avrundet øverst og ofte med en tynn børste på oversiden. Munnen hos høyerestående fluer er vanligvis omdannet til sugemunn. (Hågvar, 2014).

Årevinger (*Hymenoptera*)

Årevinger er en orden av insekter som deles inn i underordenene planteveps (*Symphyta*) og stkveps (*Apocrita*). Planteveps inkluderer treveps, barveps, klubbeveps og bladveps. Stilkveps inkluderer gullveps, stikkeveps, maur, bier (bestående av gruppene bier og humler), snylteveps, graveveps, murerveps, veiveps og praktveps (Hågvar, 2014).

Stilkvepser har også en såkalt ‘’vepsetalje’’ (en liten streng mellom for- og bakkroppen) som gjør dem i stand til å øke bevegeligheten på bakkroppen og vil være til nytte når dem skal til å stikke med brodden eller legge egg med eggleggingsrøret (Hågvar, 2014).

De fleste årevinger har det særegne trekket ved at de er sosiale insekter – det vil si insekter som lever i egne samfunn og lever ved å samarbeide med hverandre (Hågvar, 2014). Det kan
være samarbeid om det å skaffe næring til samfunnet, eller det å forsvare bol/reder. Unntak finnes hos noen solitere insekter, eksempelvis solitere vepser og alle norske bier (slike som jordbier (*Andrena*), sandbier (*Halictus*) og bladskjærerbier (*Megachile*)), utenom honningbien (*Apis mellifera*), som ikke regnes som sosiale insekter.

Langtungede bier som humla og bier er i motsetning til vepser noe mer hårete insekter, og bakkroppen hos humler er noe mer bredere enn hos vepser. De er tillegg utstyrt med bakbein som er mer avflatt på første fotledd og som er forsynt med stive hår. Hårene på bakbeina fungere som en ”pollenkurv” der pollenet som humla og bien har samlet fra planter, blir fraktet med (Hågvar, 2014).

Edderkoppdyr (Arachnida)

Edderkoppdyr er en egen gruppe blant leddyr og representerer dyr innen rekken Chelicera.

De mangler antenner og kjever, men til gjengjeld har de fire beinpar – i motsetning til insekter
flest som bare har tre beinpar. På forkroppen har edderkoppdyr et varierende sett med øyne, hvert øye ett punktøye, de fire beinparene med gangbein, samt et par beinlignende pedipalper, som brukes til å føle med. På bakkroppen mangler edderkoppdyr bein, men har isteden et par spinnvorter, sittende bakerst. Pusteorganet hos edderkoppdyr varierer, alt fra trakeer (slik som hos midd, vevkjerringer, mosskorpioner), boklunger (slik som hos skorpioner) eller en kombinasjon av trakeer og boklunger (som hos de fleste edderkopper) til direkte diffusjon gjennom huden (som hos mange middarter) (Hågvar, 2014).

Utviklingsmessig utvikler edderkoppdyr direkte – det vil si de utvikler seg ikke fra larver – men mer lik nymfer – gjennom hudskifte.

![Figur 30. Oversikt over eksempler på insekter som tilhører hovedgruppen edderkoppdyr. Blant edderkoppdyr tilhører edderkopper, midd og skorpioner. Foto: ukjent (Folkehelseinstituttet, 2016).](image)

Sommerfugler (Lepidoptera)

Sommerfugler er en orden insekter som kjennetegnes ved vinger som er dekket av taklagte skjell. Skjellene selv er farget, og fargen kommer av lysbrytningen i dem – noe som skaper de

Larvene hos sommerfugler har bitemunn, utenom sommerfugllarver av plantespisere. Sommerfugllarver har også en karakterisk kjennetegn ved at de har tre par leddelte gangbein på forkroppen og tre til fem par vorteføtter på bakkroppen (Hågvar, 2014).

Sommerfuglfamilier som nattfly, spinne, tussmørkesvermere, tredrepere, bloddråpesvermere, dagsommerfugler, svalestjerter, nymfevinger, hvitvinger og glansvinger tilhører denne gruppen (Hågvar, 2014).

Vedlegg B. Snødekket

Figur som viser snøsmeltingen gjennom året og når det eventuelt er barmark for år 2017 og 2018, fra starten av våren (mars) og frem til når snøen er smeltet bort. Denne figuren er et supplement til besvarelsen av problemstillingene, selv om snømengden/snødybden virket til å være forlengt smeltet bort i løpet av tidsrommet feltarbeidet ble gjort, og er ikke spesielt relevant i forhold til tidsrommet studiet tok til – men er likevel interessant å vite når sesongen for barmark begynte.

Vedlegg C. Bilder fra tellingen av insekter

Vedlagte bilder til dette delkapittelet viser noen utvalg av insekter og andre ting som ikke er insekter som var å finne og der det var mulig å gruppere disse funnene blant fangsten fra somrene 2017 og 2018.

Figur 33. Individer av arten fiolett jordløper og vanlig jordløper (C. violaceus og C. nemoralis).

Figur 34. Spretthale, av typen leddspretthaler, sett med bruk av håndlupe. Bildet noe uklart.
Figur 35. En firfisle, trolig av arten nordfirfisle (Zootoca vivipara) representerer et eksempel på bifangst i fallfellene på Lifjellet.

Figur 36. En av mange ridderkopper som ble funnet i fallfellene.
Vedlegg D. Kart over avgrensningen av studieområdet – kommunalt nivå
dette er et tilleggskart til kartet vist i delkapittel 2. Studieområdet (Figur 1.).

Figur 37. Studieområdet. Ligger på 549 til 600 m.o.h. vest i Lierne kommune.
Figur 38. Oversikten over rypas matfat, der hvor det blir vist hva voksne ryper og rypekyllinger liker og foretrekker av mat fra sommeren til og med om vinteren (Pedersen & Karl sen, 2007).
Vedlegg F. Ukentlig fordeling av insekter og edderkoppdyr i 2017.

<table>
<thead>
<tr>
<th>Insekter / Uke</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tusenbein/ skolopendere</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spretthaler</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Døgnflue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Øyenstikkere</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steinflue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vårflue</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teger</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Voksne biller</td>
<td>25</td>
<td>11</td>
<td>16</td>
<td>20</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>Larver (biller)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Knott</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>25</td>
<td>46</td>
</tr>
<tr>
<td>Mygg</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Stankelbein</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Fluer</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>24</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>Klegg, blinding, regnklegg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Plantevps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snyltevps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maur</td>
<td>90</td>
<td>18</td>
<td>89</td>
<td>30</td>
<td>30</td>
<td>257</td>
</tr>
<tr>
<td>Stikevps</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Humler</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bier</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Voksne sommerfugler</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Larver (sommerfugler)</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Edderkopp-dyr</td>
<td>591</td>
<td>233</td>
<td>452</td>
<td>222</td>
<td>120</td>
<td>1618</td>
</tr>
<tr>
<td>Annet</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Ubestemte insekter</td>
<td>2</td>
<td>5</td>
<td>32</td>
<td>37</td>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>TOTALT</td>
<td>732</td>
<td>298</td>
<td>622</td>
<td>367</td>
<td>268</td>
<td>2275</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uke</th>
<th>Tusenbein/ skolopendere</th>
<th>Spretthaler</th>
<th>Døgnflue</th>
<th>Øyenstikkere</th>
<th>Steinflue</th>
<th>Vårflue</th>
<th>Teger</th>
<th>Voksne biller</th>
<th>Larver (biller)</th>
<th>Knott</th>
<th>Mygg</th>
<th>Stankelbein</th>
<th>Fluer</th>
<th>Klegg, blinding, regnklegg</th>
<th>Planteveps</th>
<th>Snylteveps</th>
<th>Maur</th>
<th>Stikkeveps</th>
<th>Humler</th>
<th>Bier</th>
<th>Voksne sommerfugler</th>
<th>Larver (sommerfugler)</th>
<th>Edderkopp-dyr</th>
<th>Annet</th>
<th>Ubestemte insekter</th>
<th>TOTALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>271</td>
<td>13</td>
<td>20</td>
<td>421</td>
</tr>
<tr>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>206</td>
<td>7</td>
<td>4</td>
<td>305</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>350</td>
<td>7</td>
<td>1</td>
<td>509</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>276</td>
<td>10</td>
<td>14</td>
<td>408</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>76</td>
<td>10</td>
<td>4</td>
<td>502</td>
</tr>
<tr>
<td>SUM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>133</td>
<td>1</td>
<td>61</td>
<td>0</td>
<td>61</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>166</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>1446</td>
<td>45</td>
<td>51</td>
<td>2150</td>
</tr>
</tbody>
</table>